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In This Talk

This talk is meant to give a “crash course” on the mathematical foundations of
symmetry-informed methods in robotics. We’ll briefly touch on:

1. Rotations and Transformations: Lie groups you already know and love!

2. Smooth Manifolds: the continuous spaces in which we work

3. Lie Group Fundamentals: thinking abstractly about continuous transformations

4. Group Actions: how Lie groups interact with other spaces

5. Equivariance and Invariance: the two most common “flavors” of symmetry

6. Robotics Sampler: what equivariance “looks like” in a few example domains

Please, ask questions during the talk!
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Rotations and Homogeneous Transforms

Whether you work in control, estimation, perception, or something else, at some point
you’ve no doubt worked with homogeneous transforms:

Ha
b =

[
Ra
b pab
0 1

]
∈ SE(3),

where pab ∈ R3 is the position of the origin of frame a in frame b and Ra
b ∈ SO(3) is the

orientation of frame a in frame b, and

SO(3) =
{
R ∈ R3×3 : RRT = RTR = I3×3, detR = 1

}
.

In this primer, I’ll assume basic familiarity with these ideas, and aim to describe more
abstract tools that provide a framework for working with symmetry in robotic systems.
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Smooth Manifolds

A smooth manifold M is a space that locally “looks like” Rn, but may have a very
different global structure. In this slide, we assume M ⊆ RN (simplifies definitions).

Example. The sphere in 3D space is the manifold S2 =
{
x ∈ R3 : xTx = 1

}
.

The tangent space at each point m ∈ M is given by

TmM =
{
γ̇(0) : γ : (−ε, ε) → M s.t. γ(0) = m

}
.

For any map f : M → N, we can define its differential (or tangent map, or derivative) by

d f
(
vm

)
:=

d

d t

(
f ◦ γ(t)

)∣∣∣
t=0

= lim
∆t→0

f
(
γ(∆t)

)
− f

(
γ(0)

)
∆t

for any smooth curve γ : (−ε, ε) → M such that γ(0) = m and γ̇(0) = vm.
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Groups
A group is a set G along with an operation · : G × G → G with three properties:

1. Associativity: (a · b) · c = a · (b · c) for all a, b, c ∈ G .

2. Identity: There exists some e ∈ G such that e · a = a for all a ∈ G .

3. Inverse: For each a ∈ G , there is some a−1 ∈ G such that a · a−1 = a−1 · a = e.

Example. The permutation group Sn:

▶ matrices where every row and column is a “one-hot” vector (0, . . . , 1, . . . , 0),

▶ the group operation is matrix multiplication,

▶ and the inverse of any P ∈ Sn is PT, e.g.,
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0



0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Lie Groups

A Lie group is a group that is also a smooth manifold and for which the group operation
(g1, g2) 7→ g1 · g2 and inverse map g 7→ g−1 are smooth.

Example. The 2D rotation group under matrix multiplication:

SO(2) =

{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ [0, 2π)

}
, R(θ1)R(θ2) = R(θ1+θ2), R(θ)−1 = R(−θ).

More Examples. SO(n), Rn (under addition), R>0 (under multiplication), . . .

Question. Is every manifold a Lie group? Answer. Definitely not, e.g., S2.

All examples here are (at least isomorphic to) matrix Lie groups, meaning G ⊆ GL(n,R)
(the invertible n × n real matrices) and the group operation is matrix multiplication.
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Group Actions

A left action of a group G on a smooth manifold M is a smooth map ϕ : G ×M → M
with the following two properties:

1. Identity: ϕ(e,m) = m for all m ∈ M, where e ∈ G is the identity.

2. Compatibility: ϕ(g1, ϕ(g2,m)) = ϕ(g1g2,m) for all g1, g2 ∈ G and m ∈ M.
Note: for a right action, this becomes ϕ(g1, ϕ(g2,m)) = ϕ(g2g1,m).

It’s often convenient to write ϕg : M → M, where ϕg (m) = ϕ(g ,m).

Example. Let ϕ : SO(3)× R3 → R3 be given by ϕ(R, x) = Rx (matrix multiplication).

Group actions are the structure we use to describe the symmetry of data defined on M.

▶ M could be the state or input space of a control system.

▶ M could be the input or output space of a regression problem.

▶ M could be the state or action space of a Markov decision process.
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Left, Right, and Inner Automorphisms of a Lie Group

Example Any Lie group G comes equipped with a few actions out of the box:

1. The left automorphism is a left action of G on itself, given by Lg (h) = g · h.
2. The right automorphism is a right action of G on itself, given by Rg (h) = h · g .
3. The inner automorphism is a left action of G on itself, given by

Ig (h) = Lg ◦ Rg−1(h) = g · h · g−1.

In an Abelian group, the operation is commutative (i.e., a · b = b · a for all a, b ∈ G ).

In such a group, Lg = Rg , and thus Ig = idG .

Examples. Abelian: SO(2), Rn, R≥0. Non-Abelian: SO(3), SE(2).
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The Lie Algebra

The Lie algebra of any Lie group G is g = TeG , the tangent space at the identity.

Crucially, every tangent space of G is given by TgG = d Lg (g) = dRg (g).

Thus, given any curve g : (−ε, ε) → G , we may express its velocity via either:

1. the body velocity, ξb(t) = d Lg(t)−1

(
ġ(t)

)
(“in the body frame”), or

2. the spacial velocity, ξs(t) = dRg(t)−1

(
ġ(t)

)
(“in the world frame”).

The adjoint representation is the action Ad : G × g → g given by

Adg (ξ) = d Ig (ξ) = d Lg ◦ dRg−1(ξ),

which converts between these velocities, i.e., ξs = Adg (ξb).
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Properties of Group Actions

We can study properties of a group action ϕ : G ×M → M:

▶ ϕ is free if for all non-identity g ∈ G , the map ϕg has no fixed points.

▶ ϕ is transitive if, for every m1,m2 ∈ M, there exists g ∈ G such that ϕg (m1) = m2.

Example.

ϕ : SO(3)× R3 → R3,

ϕ(R, x) = Rx .

✗ not free, since
ϕ(R, 0) = R0 = 0.

✗ not transitive, since
||Rx || = ||x ||, so consider

any ||x1|| ≠ ||x2|| .

Example.

ϕ : SO(3)× S2 → S2,
ϕ(R, x) = Rx .

✗ not free, since
ϕ(R, [0, 0, 1]) = [0, 0, 1].

✓ transitive, since we can
pick an axis of rotation

based on x1 × x2

Example.

ϕ : SO(2)× SO(3) → SO(3),

ϕ(θ,R) = Rz(θ)R.

✓ free, since at most one
column of R can be

(anti)parallel to [0, 0, 1].

✗ not transitive, since three
axes of rotation needed to
achieve arbitrary orientation
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Orbits of Group Actions

The orbit of any point m ∈ M is given by ϕG (m) :=
{
ϕ(g ,m) : g ∈ G

}
.

Orbits form a partition of the manifold M.

▶ If ϕ is transitive, there is a single orbit, given by M itself!

▶ Define an equivalence relation on M where m1 ∼ m2 whenever m1 ∈ ϕG (m2).

▶ This induces a quotient space M/G , each element of which is an orbit of ϕ.

▶ The quotient space M/G may be quite messy, e.g., orbits may vary in dimension!

Fact. If ϕ is free and G is compact, M/G inherits the structure of a smooth manifold.

Actually, this happens whenever ϕ is free and “proper”, but we will gloss over the details.

Example. SO(3)/SO(2) ∼= S2 for the group action ϕ(θ,R) = Rz(θ)R.

12 / 19



Groups Made Out of Other Groups

Consider two Lie groups G and H. We can construct a new Lie group in two ways:

▶ The direct product G × H is the Lie group whose operation is performed
componentwise, i.e., it is given by (g1, h1) · (g2, h2) = (g1g2, h1h2).

▶ Given an action ϕ : G × H → H, the semidirect product G ⋉ H is the Lie group
whose operation is given by (g1, h1) · (g2, h2) = (g1g2, h1ϕ(g1, h2)).

Question. What’s the difference between R3 × SO(3) and SE(3)?

Answer. As a manifold, nothing! As a Lie group, SE(3) = SO(3)⋉R3, the semidirect
product (vs. the direct product) using the action ϕ : (R, x) 7→ Rx . We verify:[

R1 x1
0 1

] [
R2 x2
0 1

]
=

[
R1R2 R1x2 + x1
0 1

]
=

[
R1R2 x1 + ϕ(R1, x2)
0 1

]
,

since the group operation for R3 is addition.
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Two Common Flavors of Symmetry

Consider a map f : M → N as well as actions ϕ : G ×M → M and ψ : G × N → N.

We consider two basic flavors of symmetry:

1. f is invariant with respect to ϕ if f ◦ ϕg = f for all g ∈ G .

2. f is equivariant with respect to ϕ and ψ if f ◦ ϕg = ψg ◦ f for all g ∈ G .

We illustrate these ideas with the following commutative diagrams:

invariance:

M

M N

ϕg
f

f

equivariance:

M N

M N

ϕg

f

ψg

f

Thus, invariance is just equivariance with ψg = idN for all g ∈ G .

14 / 19



Equivariance Sampler: Perception
Example. Consider the design of an edge detection filter for square grayscale images,
modeled as a map f : Rk×k → {0, 1}k×k , where edges are 1’s and all other pixels are 0’s.

Define an action ϕ : D4 × Rk×k → Rk×k , where Dn is the dihedral group consisting of
all rotations and reflections that preserve the vertices of a regular n-sided polygon.

f−→

y ϕg

y ψg

f−→

Convolutional layers have translational
equivariance (shifting input shifts output).

What about rotations, reflections, etc.?

Common Approach. Design a neural
architecture that explicitly enforces
equivariance constraints by building
networks out of group convolutions.
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Equivariance Sampler: Reinforcement Learning

Example. Consider a Markov decision process M = (S ,A,R, τ), where R : S × A → R
and τ : S × A → ∆(S), along with group actions ϕ : G × S → S and ψ : G × A → A.

Fact. If an MDP M = (S ,A,R, τ) has:

1. equivariant transitions (i.e., τ
(
ϕg (s), ψg (a)

)
= τ(s, a) ◦ ϕg ) and

2. an invariant reward (i.e., R
(
ϕg (s), ψg (a)

)
= R(s, a)),

then the optimal policy is equivariant and the value function is invariant.

Note: this is a sufficient (but not necessary) condition!

Common Approach. Constrain the value and policy networks to be equivariant using
specialized architectures, then apply standard reinforcement learning (RL) algorithms.

Common Approach. Construct an MDP homomorphism from the original MDP
“upstairs” to one of lower dimension “downstairs” (often with S̃ = S/G ). Then, learn a
policy “downstairs”, and “lift” it back “upstairs” with guaranteed value equivalence.
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Equivariance Sampler: Estimation and Control

Question. Is there a global error between actual and reference states m,md ∈ M?

On a Lie group, yes, e.g., e = gd
−1g . But there is no inverse on a general manifold!

Let M be a homogeneous space, i.e., we have a transitive group action ϕ : G ×M → M.

Examples. Some that show up often in robotics include:

1. Any Lie group M = G with ϕg = Lg or ϕg = Rg .

2. M = Sn under the usual action of G = SO(3) given by ϕR(x) = Rx .

Pick an arbitrary fixed origin 0M ∈ M. For any reference md : R → M, a lift is a curve
gd : R → G satisfying ϕ(gd , 0M) = md . Then, define the error e = ϕ(gd

−1,m).

Fact. e = 0M if and only if md = m.

Such a globally-defined error can be used to design intrinsic tracking controllers and state
observers with global or almost global convergence and better linearization properties.
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Equivariance Sampler: Dynamics
For a robotic system with configuration q ∈ Q actuated by configuration-dependent
forces, the dynamics take the form of the so-called “manipulator equations”

M(q)v̇ + C(q, v)v + g(q) = B(q)u,

where M, C, g, and B depend in general on all parts of the configuration q.

However, it’s well-known that for free-floating multibody robots with configuration
q = (H, θ) ∈ Q = SE(3)× Rn and actuated by “body-fixed” forces (e.g., thrusters,
actuated joints, etc.), we may express the dynamics in the simplified form

M(θ)v̇ + C(θ, v)v + g(q) = B(θ)u,

where M, C, and B depend in particular on θ (but not on H).

More formally, this is a direct result of the fact that the mass matrix M(q) (and the
input forces) are invariant to the action ϕ : SE(3)× Q → Q which acts by left
translation on the SE(3) component, so all dependence on H can be “reduced” away.
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Summary

▶ In this background lecture, we’ve reviewed some basic tools with which we can
describe, analyze, and ultimately exploit symmetries in robotic systems.
▶ Lie groups are the basic structure of continuous symmetries.
▶ Group actions allow us to describe the symmetry of data defined on other manifolds.
▶ With a free group action, often invariance along the orbits is desirable.
▶ With a transitive group action, we are able to obtain global error states.

▶ These ideas show up across numerous “verticals” in robotics.

▶ This overview was nowhere near complete, but I hope it provides a basis to make
the rest of today’s workshop more accessible to newcomers

Q U E S T I O N S ?
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